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Breaking and merging of liquid sheets and filaments
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Abstract. The surface of a sheet of liquid which contracts due to surface tension, breaks, and then pulls apart into
two pieces, is calculated. Before breaking, the flow is the self-similar one found by Keller, Milewski and Vanden-
Broeck. After breaking, it is the self-similar flow found by Keller and Miksis. A general numerical scheme, which
includes the previous ones, is presented and new numerical results are discussed. There is an analogous flow of an
axially symmetric liquid filament, but it is not calculated.
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1. Introduction

Whenever a liquid sheet or filament breaks, or two bodies of fluid merge, the domain contain-
ing the liquid changes its topology discontinuously. For example, it may change from being
connected to being disconnected, as happens when a filament breaks, or from being simply
connected to being multiply connected, as occurs when a hole forms in a sheet. Accompanying
this topological discontinuity is a singularity in the fluid velocity at the instant of breaking
or merging. The singular behavior of the topology and of the velocity make it difficult to
analyze breaking and merging flows. Therefore it is of interest to find examples of such flows
which can be analyzed, so we shall present one in two dimensions and a similar one in three
dimensions.

Our examples involve the potential flow of an inviscid incompressible liquid of density ρ
acted upon by surface tension σ . The flow is reversible, so the breaking flow, when reversed,
yields a merging flow. Therefore we shall just describe the breaking flow. At the instant of
breaking, t = 0, a two dimensional sheet of liquid is bounded by two planes which intersect
along the z-axis, as shown in Figure 1b. The liquid is at rest and occupies two wedge-shaped
regions with their edges in contact. In the three dimensional case, a liquid filament is bounded
initially by two nappes of a cone. The liquid is at rest and occupies two conical regions with
their vertices in contact at the origin.

Keller and Miksis [1] showed by dimensional analysis that in both of these cases the flow
and the boundary of the fluid domain are self-similar for t > 0. In both cases, the equation for
the boundary is of the form F

[
x/(t2σ/ρ)1/3

] = 0, and the velocity potential is of the form
t1/3(σ/ρ)2/3ϕ

[
x/(t2σ/ρ)1/3

]
. Thus lengths grow like t2/3 as t increases. The velocity decays

like t−1/3 at a fixed value of x/(t2σ/ρ)1/3, and at any fixed value of x �= 0 it tends to zero at
t = 0. For breaking, the boundary was determined numerically in [1, Figure 2] for the two
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dimensional case, for various values of the wedge angle. The fluid is contained in two domains
shown in Figure 1c, which continually separate from one another.

The same analysis applies for t < 0, before breaking, when the fluid occupies one domain.
This case, shown in Figure 1a, was solved numerically by Keller et al. [2, Figure 2], who
considered the merging of two wedges of fluid initially at rest with their edges in contact.
Since the flow is reversible, their solution can be reversed to represent the gradual thinning of
a liquid sheet which, at t = 0, becomes two wedges of fluid at rest with their edges in contact.

We now use the time reversal of the merging flow obtained in [2] followed by the retracting
or separating flow obtained in [1]. This yields a flow which represents the gradual thinning
of a single sheet of fluid (Figure 1a). It reaches zero thickness along the line z = 0 at t = 0
(Figure 1b). Then it splits apart into two regions of fluid which separate rapidly from one
another (Figure 1c). Figure 1 applies for a 45-degree slope angle of the free surface far out in
the first quadrant. Solutions like these can be obtained for other slope angles.

The flow just described is very special, which is why it can be analyzed. Exactly the
same description applies to the filament in three dimensions, but the solutions have not been
calculated numerically.

Previously, Eggers [3] used two solutions to describe the shape and flow of an axially
symmetric filament of viscous liquid, one valid before pinch-off and one valid after. He
considered the first term in the expansion of the velocity in powers of the radial variable,
which depended upon z and t . He found two similarity solutions which satisfied an ordinary
differential equation. Day et al. [4] solved numerically for the flow before pinch-off of an
axially symmetric drop which was initially dumbbell shaped. They found that for a variety of
initial conditions, its shape and velocity tended to a self-similar form near the breaking point.

The discussion above shows that the breaking problem in [1] is related to the merging
problem in [2]. This suggests combining the numerical procedures in [1] and [2] into a unified
scheme. This is achieved in Section 2. In Section 3, new numerical solutions are presented.

2. Formulation

We consider two wedges of fluid touching at their vertices (see Figure 2a). We introduce
cartesian coordinates with the origin at O. The configuration is assumed to be symmetric with
respect to the x-axis. Only the portion of the configuration in y > 0 is shown in Figure 2a.
The lines OA and OB make angles θ1 and θ2 with the positive x-axis.

At t = 0, the fluid begins to move under the influence of surface tension. There are two
possible scenarios. In the first the fluid splits apart into two regions of fluid (see Figure 2b).
In the second the two wedges merge into a single fluid region (see Figure 2c). These two
problems have been studied by Keller and Miksis [1] and by Keller et al. [2]. We shall refer
to them as the breaking problem (Figure 2b) and the merging problem (Figure 2c). Since
the initial configuration is symmetric with respect to the x-axis, the resulting flow will be
symmetric also. Therefore we only show in Figures 2b and 2c the flow in the region y > 0.

The fluid velocity can be written as ∇�(x, t) where the potential � is a harmonic function
in the fluid domain �(t):

�� = 0, x ∈ �(t). (2.1)

For the merging problem, �(t) is the ‘FLUID’ area of Figure 2c. For the breaking problem,
the two disjoint ‘FLUID’ areas of Figure 2b can be calculated independently. Therefore we
assume first, that �(t) is the ‘FLUID’ area x > 0, y > 0 of Figure 2b.
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Figure 1a. The self-similar surfaces of a sheet of liquid
are shown for t < 0. The sheet is becoming thinner
near the origin as the liquid flows outward. The sur-
faces are symmetric about the x and y axes. In the
variables x/(t2σ/ρ)1/3, y/(t2σ/ρ)1/3 the surfaces are
independent of t for t < 0.

Figure 1b. The limit at t = 0 of the sheet shown in
Figure 1a. The limit of the fluid velocity is zero at every
point other than the origin. The surfaces of the fluid are
the straight lines y = ±x. This is the configuration at
the instant of breaking.

Figure 1c. For t > 0, the self-similar surfaces of the two
parts into which the sheet has broken are shown. The
surfaces tend to the configuration shown in Figure 1b as
t → 0, and the velocity tends to zero as t → 0 at every
point except the origin. In the variables x/(t2σ/ρ)1/3,
y/(t2σ/ρ)1/3 the surfaces are independent of t for t >
0.

Figure 2. Sketches of the flow and of the coordinates.
Each of the three flows is assumed to be symmetric with
respect to the x-axis. Only the portions in y > 0 are
shown.
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For simplicity we shall first describe the formulation of the merging problem and indicate
at the end of Section 3 the required changes for the breaking problem. The free boundary of
�(t) is described by F(x, t) = 0. On this boundary, the kinematic and dynamic boundary
conditions are, respectively,

Ft + ∇� · ∇F = 0, on F = 0, (2.2)

�t + 1

2
(∇�)2 + (σ/ρ)κ = 0 on F = 0. (2.3)

Here, σ is the coefficient of surface tension, ρ is the density of the fluid, and κ is the curvature
of the free surface. The symmetry about the x-axis implies

�y = 0 on y = 0. (2.4)

To fix the velocity potential uniquely, we assume that

� → 0 as x2 + y2 → ∞. (2.5)

Initially, at t = 0, we require that

�(x, 0) = 0, (2.6)

F(x, 0) = y cos θ1 − x sin θ1, x > 0, (2.7)

F(x, 0) = y cos θ2 − x sin θ2, x < 0. (2.8)

This concludes the formulation of the problem. For given values of θ1 and θ2, we seek � and
the curve F = 0 such that (2.1)–(2.8) are satisfied.

Since this problem contains no length scale, we shall seek a solution expressed in terms of
the dimensionless similarity variables ξ and η defined by

ξ = x(ρ/σ t2)1/3, η = y(ρ/σ t2)1/3. (2.9)

We write � and F in terms of two new functions ϕ and f :

�(x, y, t) = (σ 2t/ρ2)1/3ϕ(ξ, η), (2.10)

F(x, y, t) = f (ξ, η). (2.11)

The domain �(t) becomes a fixed domain �0 in the ξ, η variables, with the equation of
the free boundary given by f (ξ, η) = 0. Substituting (2.9)–(2.11) into (2.1)–(2.3) yields,

�ϕ = 0 in �0, (2.12)

− 2
3(ξ, η) · n̂+ ∇ϕ · n̂ = 0 on f = 0, (2.13)

− 2
3(ξ, η) · ∇ϕ + 1

2 (∇ϕ)2 + 1
3ϕ + κ = 0 on f = 0. (2.14)

In (2.13), n̂ denotes the unit normal pointing out of �0. Equations (2.4) and (2.5) remain
unchanged with �, x, y, F replaced by ϕ, ξ, η, f respectively. Equation (2.6) follows from
(2.10), while (2.7), (2.8) and (2.11) yield
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f (ξ, η) ∼ η cos θ1 − ξ sin θ1 as ξ 2 + η2 → ∞ with ξ > 0, (2.15)

f (ξ, η) ∼ η cos θ2 − ξ sin θ2 as ξ 2 + η2 → ∞ with ξ < 0. (2.16)

3. Integro-differential formulation

To solve the problem formulated in Section 2, we first express the free surface f (ξ, η) = 0
parametrically in terms of arclength s along it: ξ = ξ̄ (s), η = η̄(s). Then

ξ̄ ′2 + η̄′2 = 1. (3.1)

The tangent t̂ and the normal n̂ are given by

t̂ = (ξ̄ ′, η̄′), n̂ = (−η̄′, ξ̄ ′), (3.2)

and the curvature κ is

κ = η̄′ξ̄ ′′ − ξ̄ ′η̄′′. (3.3)

On the boundary the gradient of ϕ can be written as

∇ϕ = n̂
∂ϕ

∂n
+ t̂

∂ϕ

∂s
. (3.4)

By using these relations, we can write the boundary conditions (2.13) and (2.14) as

∂ϕ

∂n
= 2

3
(η̄ξ̄ ′ − ξ̄ η̄′), (3.5)

−2

3
(ξ̄ ξ̄ ′ + η̄η̄′)

∂ϕ

∂s
+ 1

2

(
∂ϕ

∂s

)2

− 1

2

(
∂ϕ

∂n

)2

+ 1

3
ϕ + η̄′ξ̄ ′′ − ξ̄ ′η̄′′ = 0. (3.6)

On the free surface, the far field conditions (2.5), (2.15) and (2.16) become, respectively,

ϕ → 0 as s → ∞, (3.7)

η̄ cos θ1 − ξ̄ sin θ1 = 0 as s → +∞ (3.8)

η̄ cos θ2 − ξ̄ sin θ2 = 0 as s → −∞. (3.9)

We introduce the Green’s function G(ξ, η, ξ ∗, η∗) satisfying

�G = δ(ξ − ξ ∗, η − η∗), (3.10)

∂G

∂η
= 0, on η = 0. (3.11)

Using the method of images, we find that G is given by

G = 1

2π
log[(ξ − ξ ∗)2 + (η − η∗)2]1/2 + 1

2π
log[(ξ − ξ ∗)2 + (η + η∗)2]1/2 (3.12)
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We now apply Green’s theorem in �0 to ϕ and G, writing G(s, s∗) = G[ξ̄ (s), η̄(s), ξ̄ (s∗),
η̄(s∗)] and ϕ(s) = ϕ[ξ̄ (s), η̄(s)]. The only nonzero contribution to the integrals comes from
the free surface, so we get

1

2
ϕ(s∗) =

∫ ∞

−∞

[
ϕ(s)

∂G

∂n
(s, s∗)−G(s, s∗)

∂ϕ

∂n
(s)

]
ds. (3.13)

Equation (3.13), together with the conditions (3.1) and (3.5)–(3.9) define an integro–differential
system for the unknowns ξ̄ (s), η̄(s), ϕ(s). This concludes the formulation of the merging
problem.

For the breaking problem, �(t) is the ‘FLUID’ area x > 0, y > 0 of Figure 2b. Therefore
the integral from −∞ to ∞ in (3.13) is replaced by an integral from 0 to ∞. This new equation
(3.13), together with the conditions (3.5)–(3.8) define the integro-differential equation for the
‘FLUID’ in the region x > 0 of Figure 2b. The corresponding problem for the ‘FLUID’ area
in the region x < 0 of Figure 2b is obtained by solving the same equations with θ1 replaced
by π − θ2 in (3.8). At the end of the calculations the flow is refected across the y-axis.

These various integro–differential equations can be solved by using the finite difference
methods described in [1] and [2]. The reader is referred to these papers for details.

4. Discussion of the numerical results

The numerical scheme described in Section 3 was used to compute solutions for various values
of θ1 and θ2.

We first consider solutions which are symmetric with respect to the y-axis (i.e. we assume
θ2 = π − θ1) Typical solutions for the breaking and merging problems are shown in Figure 1.
Here θ1 = π/4. One feature of these solutions is the presence of capillary waves. These
waves are of decaying amplitude as |s| → ∞. Keller and Miksis ([1]) derived an asymptotic
solution which agrees with the numerical results for |s| large. As θ1 increases, the amplitude of
the capillary waves increases. This is illustrated in Figure 2 of [2] where profiles are presented
for various values of θ1 < 85◦. We note that the profiles in [2] need to be rotated by 90◦ to
give those presented here. These results suggest that the free surface will ultimately come into
contact with itself for θ1 near 90◦. To check this idea we calculated solutions for θ > 85◦.
These computations show that the free surface develops a point of contact with itself at θ1 ≈
87.5◦, trapping a ‘bubble’. The corresponding free surface profiles are shown in Figure 3. We
note that since the solutions are self-similar, the area of the trapped bubble is not conserved,
and therefore trapping cannot occur in a configuration of two incompressible fluids. For the
same reason, pinchoff cannot occur in the self similar solution for either part in the breaking
of a single incompressible fluid.

There are different ways to interpret the solutions in Figure 1. In [1] and [2], the initial
configuration is the flow of Figure 1b. The calculations in [1] are concerned with the breaking
problem in which the flow evolves for t > 0 into the configuration of Figure 1c. Those in [2]
describe the merging problem in which the flow evolves into the configuration of Figure 1a.
As described in the introduction, there is a third interpretation which is obtained by reversing
the flow in [2]. We then have a gradual thinning of a single sheet (Figure 1a). It reaches zero
thickness at t = 0 (Figure 1b) and then splits into two regions (Figure 1c).

So far all the solutions presented are symmetric with respect to the y-axis. In Figure 4
we present a merging solution for θ1 = 50◦ and various values of θ2. If we use the third
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Figure 3. (a) Merging flow for θ1 = 87·5◦. The flow is
symmetric with respect to x = 0. There are trapped
bubbles at the tips of the free surface. (b) Enlarged
profile of a trapped bubble.

Figure 4. Nonsymmetric merging flows with θ1 = 500

and various values of θ2.

interpretation, this sheet will gradually thin, reach zero thickness and then evolve into two
separate regions symmetric with respect to the x-axis.

5. Conclusions

We have presented a numerical procedure which unifies the results in [1] and [2]. We have
shown that the solutions in [1] and [2] can be used to describe the progressive thinning and
breaking of a sheet of liquid. We have presented new numerical solutions showing that there
are solutions for which the free surface touches itself at one point and encloses a small bub-
ble. Nonsymmetric merging flows were also presented. There also are self similar solutions
describing fluids in contact with rigid walls. These flows are calculated in [1] and [2].
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